Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.

Identifieur interne : 000574 ( Main/Exploration ); précédent : 000573; suivant : 000575

Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.

Auteurs : Kheirghadam Enayatzamir [Espagne] ; Hossein A. Alikhani ; Bagher Yakhchali ; Fatemeh Tabandeh ; Susana Rodríguez-Couto

Source :

RBID : pubmed:19259719

Descripteurs français

English descriptors

Abstract

BACKGROUND, AIM AND SCOPE

Because of high discharged volumes and effluent composition, wastewater from the textile industry can be considered as the most polluting amongst all industrial sectors, thus greatly requiring appropriate treatment technologies. Although some abiotic methods for the reduction of several dyes exist, these require highly expensive catalysts and reagents. Biotechnological approaches were proven to be potentially effective in the treatment of this pollution source in an eco-efficient manner. The white-rot fungi are, so far, the most efficient microorganisms in degrading synthetic dyes. This white-rot fungi's property is due to the production of extracellular lignin-modifying enzymes, which are able to degrade a wide range of xenobiotic compounds because of their low substrate specificity. In this paper, we studied the ability of the white-rot fungus Phanerochaete chrysosporium immobilised into Ca-alginate beads to decolourise different recalcitrant azo dyes such as Direct Violet 51 (DV), Reactive Black 5 (RB), Ponceau Xylidine (PX) and Bismark Brown R (BB) in successive batch cultures. To the best of our knowledge, this is the first study on the immobilisation of P. chrysosporium into Ca-alginate beads for its application in dye decolouration.

MATERIALS AND METHODS

P. chrysosporium was immobilised into Ca-alginate beads using a method of gel recoating to minimise cellular leaking. The immobilised fungus was transferred to 250-ml Erlenmeyer flasks containing 50 ml of growth medium and incubated on an orbital shaker at 150 rpm and 30 degrees C for 7 days. The ratio of beads/medium used was 10% (w/v). The dyes were added into the culture flasks when MnP production started (50 U l(-1)), which corresponded with the seventh cultivation day. MnP activity and dye decolouration were measured spectrophotometrically.

RESULTS

The dyes DV, RB and PX were almost totally decolourised at the end of each batch during the course of three successive batches. However, the dye BB was more resistant to decolouration and it was not completely decolourised (86.7% in 144 h). Further, the beads were kept in sterilised calcium chloride (2 g l(-1)) for 3 weeks at 4 degrees C. After these three storage weeks, the immobilised P. chrysosporium was again efficiently reused for azo dye decolouration during two successive batches, decolouration being more effective even for BB. Also, the in vitro decolouration of the aforementioned azo dyes by crude MnP from P. chrysosporium was performed. The decolouration levels obtained were lower than those attained with the whole cultures especially for RB and BB dyes, in spite of the fact that dye concentrations used were considerable lower.

DISCUSSION

The good performance of the immobilisation system was likely due to the gel re-coating method utilised to prepare the alginate beads which not only maintained the beads integrity but also avoided cellular leaking. The lower decolouration percentages obtained by the enzyme indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or other compounds that favour dye decolouration.

CONCLUSIONS

Immobilised P. chrysosporium efficiently decolourised different types of azo dyes. In this decolouration process, the MnP secreted by the fungus played the main role whilst adsorption was found to be negligible except for the dye BB.

RECOMMENDATIONS AND PERSPECTIVES

Efforts should be made to scale up and apply fungal decolouration techniques to real industrial dye-containing wastewater. Further, detailed characterisation of the intermediates and metabolites produced during biodegradation must be done to ensure the safety of the decolourised wastewater.


DOI: 10.1007/s11356-009-0109-5
PubMed: 19259719


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.</title>
<author>
<name sortKey="Enayatzamir, Kheirghadam" sort="Enayatzamir, Kheirghadam" uniqKey="Enayatzamir K" first="Kheirghadam" last="Enayatzamir">Kheirghadam Enayatzamir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Rovira i Virgili University, 43007, Tarragona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Chemical Engineering, Rovira i Virgili University, 43007, Tarragona</wicri:regionArea>
<wicri:noRegion>Tarragona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alikhani, Hossein A" sort="Alikhani, Hossein A" uniqKey="Alikhani H" first="Hossein A" last="Alikhani">Hossein A. Alikhani</name>
</author>
<author>
<name sortKey="Yakhchali, Bagher" sort="Yakhchali, Bagher" uniqKey="Yakhchali B" first="Bagher" last="Yakhchali">Bagher Yakhchali</name>
</author>
<author>
<name sortKey="Tabandeh, Fatemeh" sort="Tabandeh, Fatemeh" uniqKey="Tabandeh F" first="Fatemeh" last="Tabandeh">Fatemeh Tabandeh</name>
</author>
<author>
<name sortKey="Rodriguez Couto, Susana" sort="Rodriguez Couto, Susana" uniqKey="Rodriguez Couto S" first="Susana" last="Rodríguez-Couto">Susana Rodríguez-Couto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19259719</idno>
<idno type="pmid">19259719</idno>
<idno type="doi">10.1007/s11356-009-0109-5</idno>
<idno type="wicri:Area/Main/Corpus">000636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000636</idno>
<idno type="wicri:Area/Main/Curation">000636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000636</idno>
<idno type="wicri:Area/Main/Exploration">000636</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.</title>
<author>
<name sortKey="Enayatzamir, Kheirghadam" sort="Enayatzamir, Kheirghadam" uniqKey="Enayatzamir K" first="Kheirghadam" last="Enayatzamir">Kheirghadam Enayatzamir</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Rovira i Virgili University, 43007, Tarragona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Chemical Engineering, Rovira i Virgili University, 43007, Tarragona</wicri:regionArea>
<wicri:noRegion>Tarragona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alikhani, Hossein A" sort="Alikhani, Hossein A" uniqKey="Alikhani H" first="Hossein A" last="Alikhani">Hossein A. Alikhani</name>
</author>
<author>
<name sortKey="Yakhchali, Bagher" sort="Yakhchali, Bagher" uniqKey="Yakhchali B" first="Bagher" last="Yakhchali">Bagher Yakhchali</name>
</author>
<author>
<name sortKey="Tabandeh, Fatemeh" sort="Tabandeh, Fatemeh" uniqKey="Tabandeh F" first="Fatemeh" last="Tabandeh">Fatemeh Tabandeh</name>
</author>
<author>
<name sortKey="Rodriguez Couto, Susana" sort="Rodriguez Couto, Susana" uniqKey="Rodriguez Couto S" first="Susana" last="Rodríguez-Couto">Susana Rodríguez-Couto</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alginates (chemistry)</term>
<term>Azo Compounds (chemistry)</term>
<term>Azo Compounds (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Calcium (chemistry)</term>
<term>Color (MeSH)</term>
<term>Coloring Agents (chemistry)</term>
<term>Coloring Agents (metabolism)</term>
<term>Industrial Waste (MeSH)</term>
<term>Microspheres (MeSH)</term>
<term>Phanerochaete (chemistry)</term>
<term>Phanerochaete (metabolism)</term>
<term>Temperature (MeSH)</term>
<term>Textile Industry (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Waste Disposal, Fluid (methods)</term>
<term>Water Pollutants, Chemical (chemistry)</term>
<term>Water Pollutants, Chemical (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agents colorants (composition chimique)</term>
<term>Agents colorants (métabolisme)</term>
<term>Alginates (composition chimique)</term>
<term>Calcium (composition chimique)</term>
<term>Composés azoïques (composition chimique)</term>
<term>Composés azoïques (métabolisme)</term>
<term>Couleur (MeSH)</term>
<term>Déchets industriels (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Industrie textile (MeSH)</term>
<term>Microsphères (MeSH)</term>
<term>Phanerochaete (composition chimique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Polluants chimiques de l'eau (composition chimique)</term>
<term>Polluants chimiques de l'eau (métabolisme)</term>
<term>Température (MeSH)</term>
<term>Élimination des déchets liquides (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alginates</term>
<term>Azo Compounds</term>
<term>Calcium</term>
<term>Coloring Agents</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Azo Compounds</term>
<term>Coloring Agents</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Agents colorants</term>
<term>Alginates</term>
<term>Calcium</term>
<term>Composés azoïques</term>
<term>Phanerochaete</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Waste Disposal, Fluid</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agents colorants</term>
<term>Composés azoïques</term>
<term>Phanerochaete</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Élimination des déchets liquides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Color</term>
<term>Industrial Waste</term>
<term>Microspheres</term>
<term>Temperature</term>
<term>Textile Industry</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Couleur</term>
<term>Déchets industriels</term>
<term>Dépollution biologique de l'environnement</term>
<term>Facteurs temps</term>
<term>Industrie textile</term>
<term>Microsphères</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND, AIM AND SCOPE</b>
</p>
<p>Because of high discharged volumes and effluent composition, wastewater from the textile industry can be considered as the most polluting amongst all industrial sectors, thus greatly requiring appropriate treatment technologies. Although some abiotic methods for the reduction of several dyes exist, these require highly expensive catalysts and reagents. Biotechnological approaches were proven to be potentially effective in the treatment of this pollution source in an eco-efficient manner. The white-rot fungi are, so far, the most efficient microorganisms in degrading synthetic dyes. This white-rot fungi's property is due to the production of extracellular lignin-modifying enzymes, which are able to degrade a wide range of xenobiotic compounds because of their low substrate specificity. In this paper, we studied the ability of the white-rot fungus Phanerochaete chrysosporium immobilised into Ca-alginate beads to decolourise different recalcitrant azo dyes such as Direct Violet 51 (DV), Reactive Black 5 (RB), Ponceau Xylidine (PX) and Bismark Brown R (BB) in successive batch cultures. To the best of our knowledge, this is the first study on the immobilisation of P. chrysosporium into Ca-alginate beads for its application in dye decolouration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>MATERIALS AND METHODS</b>
</p>
<p>P. chrysosporium was immobilised into Ca-alginate beads using a method of gel recoating to minimise cellular leaking. The immobilised fungus was transferred to 250-ml Erlenmeyer flasks containing 50 ml of growth medium and incubated on an orbital shaker at 150 rpm and 30 degrees C for 7 days. The ratio of beads/medium used was 10% (w/v). The dyes were added into the culture flasks when MnP production started (50 U l(-1)), which corresponded with the seventh cultivation day. MnP activity and dye decolouration were measured spectrophotometrically.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The dyes DV, RB and PX were almost totally decolourised at the end of each batch during the course of three successive batches. However, the dye BB was more resistant to decolouration and it was not completely decolourised (86.7% in 144 h). Further, the beads were kept in sterilised calcium chloride (2 g l(-1)) for 3 weeks at 4 degrees C. After these three storage weeks, the immobilised P. chrysosporium was again efficiently reused for azo dye decolouration during two successive batches, decolouration being more effective even for BB. Also, the in vitro decolouration of the aforementioned azo dyes by crude MnP from P. chrysosporium was performed. The decolouration levels obtained were lower than those attained with the whole cultures especially for RB and BB dyes, in spite of the fact that dye concentrations used were considerable lower.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DISCUSSION</b>
</p>
<p>The good performance of the immobilisation system was likely due to the gel re-coating method utilised to prepare the alginate beads which not only maintained the beads integrity but also avoided cellular leaking. The lower decolouration percentages obtained by the enzyme indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or other compounds that favour dye decolouration.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Immobilised P. chrysosporium efficiently decolourised different types of azo dyes. In this decolouration process, the MnP secreted by the fungus played the main role whilst adsorption was found to be negligible except for the dye BB.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RECOMMENDATIONS AND PERSPECTIVES</b>
</p>
<p>Efforts should be made to scale up and apply fungal decolouration techniques to real industrial dye-containing wastewater. Further, detailed characterisation of the intermediates and metabolites produced during biodegradation must be done to ensure the safety of the decolourised wastewater.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19259719</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.</ArticleTitle>
<Pagination>
<MedlinePgn>145-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-009-0109-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND, AIM AND SCOPE" NlmCategory="OBJECTIVE">Because of high discharged volumes and effluent composition, wastewater from the textile industry can be considered as the most polluting amongst all industrial sectors, thus greatly requiring appropriate treatment technologies. Although some abiotic methods for the reduction of several dyes exist, these require highly expensive catalysts and reagents. Biotechnological approaches were proven to be potentially effective in the treatment of this pollution source in an eco-efficient manner. The white-rot fungi are, so far, the most efficient microorganisms in degrading synthetic dyes. This white-rot fungi's property is due to the production of extracellular lignin-modifying enzymes, which are able to degrade a wide range of xenobiotic compounds because of their low substrate specificity. In this paper, we studied the ability of the white-rot fungus Phanerochaete chrysosporium immobilised into Ca-alginate beads to decolourise different recalcitrant azo dyes such as Direct Violet 51 (DV), Reactive Black 5 (RB), Ponceau Xylidine (PX) and Bismark Brown R (BB) in successive batch cultures. To the best of our knowledge, this is the first study on the immobilisation of P. chrysosporium into Ca-alginate beads for its application in dye decolouration.</AbstractText>
<AbstractText Label="MATERIALS AND METHODS" NlmCategory="METHODS">P. chrysosporium was immobilised into Ca-alginate beads using a method of gel recoating to minimise cellular leaking. The immobilised fungus was transferred to 250-ml Erlenmeyer flasks containing 50 ml of growth medium and incubated on an orbital shaker at 150 rpm and 30 degrees C for 7 days. The ratio of beads/medium used was 10% (w/v). The dyes were added into the culture flasks when MnP production started (50 U l(-1)), which corresponded with the seventh cultivation day. MnP activity and dye decolouration were measured spectrophotometrically.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The dyes DV, RB and PX were almost totally decolourised at the end of each batch during the course of three successive batches. However, the dye BB was more resistant to decolouration and it was not completely decolourised (86.7% in 144 h). Further, the beads were kept in sterilised calcium chloride (2 g l(-1)) for 3 weeks at 4 degrees C. After these three storage weeks, the immobilised P. chrysosporium was again efficiently reused for azo dye decolouration during two successive batches, decolouration being more effective even for BB. Also, the in vitro decolouration of the aforementioned azo dyes by crude MnP from P. chrysosporium was performed. The decolouration levels obtained were lower than those attained with the whole cultures especially for RB and BB dyes, in spite of the fact that dye concentrations used were considerable lower.</AbstractText>
<AbstractText Label="DISCUSSION" NlmCategory="CONCLUSIONS">The good performance of the immobilisation system was likely due to the gel re-coating method utilised to prepare the alginate beads which not only maintained the beads integrity but also avoided cellular leaking. The lower decolouration percentages obtained by the enzyme indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or other compounds that favour dye decolouration.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Immobilised P. chrysosporium efficiently decolourised different types of azo dyes. In this decolouration process, the MnP secreted by the fungus played the main role whilst adsorption was found to be negligible except for the dye BB.</AbstractText>
<AbstractText Label="RECOMMENDATIONS AND PERSPECTIVES" NlmCategory="CONCLUSIONS">Efforts should be made to scale up and apply fungal decolouration techniques to real industrial dye-containing wastewater. Further, detailed characterisation of the intermediates and metabolites produced during biodegradation must be done to ensure the safety of the decolourised wastewater.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Enayatzamir</LastName>
<ForeName>Kheirghadam</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Rovira i Virgili University, 43007, Tarragona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alikhani</LastName>
<ForeName>Hossein A</ForeName>
<Initials>HA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yakhchali</LastName>
<ForeName>Bagher</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tabandeh</LastName>
<ForeName>Fatemeh</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodríguez-Couto</LastName>
<ForeName>Susana</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000464">Alginates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001391">Azo Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004396">Coloring Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007220">Industrial Waste</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000464" MajorTopicYN="N">Alginates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001391" MajorTopicYN="N">Azo Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003116" MajorTopicYN="N">Color</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004396" MajorTopicYN="N">Coloring Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007220" MajorTopicYN="N">Industrial Waste</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008863" MajorTopicYN="Y">Microspheres</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013783" MajorTopicYN="N">Textile Industry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014865" MajorTopicYN="N">Waste Disposal, Fluid</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19259719</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-009-0109-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Water Res. 2004 Apr;38(8):2166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Oct;60(1-2):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12382067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2003 Dec;30(12):682-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14648345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Apr;51(4):295-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2001 May;77(3):257-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11272012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Apr;56(4):1114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2339873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2004;11(6):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15603526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Jun;45(6):1741-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Biopharm. 1998 Sep;46(2):233-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9795072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2006 Jun;97(9):1061-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15993052</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Alikhani, Hossein A" sort="Alikhani, Hossein A" uniqKey="Alikhani H" first="Hossein A" last="Alikhani">Hossein A. Alikhani</name>
<name sortKey="Rodriguez Couto, Susana" sort="Rodriguez Couto, Susana" uniqKey="Rodriguez Couto S" first="Susana" last="Rodríguez-Couto">Susana Rodríguez-Couto</name>
<name sortKey="Tabandeh, Fatemeh" sort="Tabandeh, Fatemeh" uniqKey="Tabandeh F" first="Fatemeh" last="Tabandeh">Fatemeh Tabandeh</name>
<name sortKey="Yakhchali, Bagher" sort="Yakhchali, Bagher" uniqKey="Yakhchali B" first="Bagher" last="Yakhchali">Bagher Yakhchali</name>
</noCountry>
<country name="Espagne">
<noRegion>
<name sortKey="Enayatzamir, Kheirghadam" sort="Enayatzamir, Kheirghadam" uniqKey="Enayatzamir K" first="Kheirghadam" last="Enayatzamir">Kheirghadam Enayatzamir</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19259719
   |texte=   Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19259719" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020